The Combination Function and Iterator using Depth First Search A

  • Time:2020-09-13 14:33:25
  • Class:Weblog
  • Read:19

The combination algorithm returns the sequence for a list or string without considering the order. For example, the Combination of string “abc” with two characters would be “ab”, “ac” and “bc”.

The number of combination for n-size elements using m elements can be computed as:

combination-formula The Combination Function and Iterator using Depth First Search Algorithm algorithms c / c++ DFS python

combination-formula

For example, Picking 2 elements out of 3 has three solutions: 3!/(2!*(3-2)!) = 3

Solving Combination via DFS Algorithm

We can use the DFS (Depth First Search) algorithm to start picking elements until we have picked the desired number of items. For each iteration, we can choose to pick or not pick the current element. The DFS can be easily implemented via Recursion.

In the following C++ function, we define a recursive combination function that will push all the results into a vector (pass by reference). We pass a position variable and we will only pick in current iteration the elements to the right of this position.

1
2
3
4
5
6
7
8
9
10
11
12
void combination(string alphabeta, int toPick, vector<string> &result, string s = "", int pos = 0) {
    if (s.size() == toPick) { // found a solution
        result.push_back(s);            
    }
    if (pos == alphabeta.size()) { // reach the end of items
        return;
    }
    for (int i = pos; i < alphabeta.size(); ++ i) { 
        // picking this element, then start picking elements to the right
        combination(alphabeta, toPick, result, s + alphabeta[i], i + 1);
    }
}
void combination(string alphabeta, int toPick, vector<string> &result, string s = "", int pos = 0) {
    if (s.size() == toPick) { // found a solution
        result.push_back(s);            
    }
    if (pos == alphabeta.size()) { // reach the end of items
        return;
    }
    for (int i = pos; i < alphabeta.size(); ++ i) { 
        // picking this element, then start picking elements to the right
        combination(alphabeta, toPick, result, s + alphabeta[i], i + 1);
    }
}

However, the DFS may not be optimal, the complexity is N elements first iteration, N-1 second iteration etc thus N*(N-1)*(N-2)*…(N-M), roughly to O(N^M).

Python Combination Function

We can implement in Python the following combination function that works for both List and String:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
def combinations(data, length):
    r = []
    def dfs(cur, pos):
        if len(cur) == length:
            r.append(cur)
        if pos == len(data):
            return
        if type(data) is list:
            for i in range(pos, len(data)):
                dfs(cur + [data[i]], i + 1)
        else:
            for i in range(pos, len(data)):
                dfs(cur + data[i], i + 1)
    if type(data) is list:        
        dfs([], 0)
    else:        
        dfs("", 0)
    return r
def combinations(data, length):
    r = []
    def dfs(cur, pos):
        if len(cur) == length:
            r.append(cur)
        if pos == len(data):
            return
        if type(data) is list:
            for i in range(pos, len(data)):
                dfs(cur + [data[i]], i + 1)
        else:
            for i in range(pos, len(data)):
                dfs(cur + data[i], i + 1)
    if type(data) is list:        
        dfs([], 0)
    else:        
        dfs("", 0)
    return r

A local recursive DFS function is defined, and we use type() to deal with the list (array) or the string. Example usage:

1
2
3
4
5
6
print(combinations([1, 2, 3, 4], 2))
>>>  [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]
print(combinations(['a', 'b', 'c', 'd'], 2))
>>>  [['a', 'b'], ['a', 'c'], ['a', 'd'], ['b', 'c'], ['b', 'd'], ['c', 'd']]
print(combinations('abcd', 2))
>>>  ['ab', 'ac', 'ad', 'bc', 'bd', 'cd']
print(combinations([1, 2, 3, 4], 2))
>>>  [[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]
print(combinations(['a', 'b', 'c', 'd'], 2))
>>>  [['a', 'b'], ['a', 'c'], ['a', 'd'], ['b', 'c'], ['b', 'd'], ['c', 'd']]
print(combinations('abcd', 2))
>>>  ['ab', 'ac', 'ad', 'bc', 'bd', 'cd']

Python Combination Iterator

If we are not using all the combination results at once, we can modify the above Python algorithm to return a iterator – which avoids sucking up memory at once. Each result is yield-ed.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
def combinations(data, length):
    def dfs(cur, pos):
        if len(cur) == length:
            yield cur
        if pos == len(data):
            return
        if type(data) is list:
            for i in range(pos, len(data)):
                for j in dfs(cur + [data[i]], i + 1):
                    yield j
        else:
            for i in range(pos, len(data)):
                for j in dfs(cur + data[i], i + 1):
                    yield j
    if type(data) is list:        
        return dfs([], 0)
    else:        
        return dfs("", 0)
def combinations(data, length):
    def dfs(cur, pos):
        if len(cur) == length:
            yield cur
        if pos == len(data):
            return
        if type(data) is list:
            for i in range(pos, len(data)):
                for j in dfs(cur + [data[i]], i + 1):
                    yield j
        else:
            for i in range(pos, len(data)):
                for j in dfs(cur + data[i], i + 1):
                    yield j
    if type(data) is list:        
        return dfs([], 0)
    else:        
        return dfs("", 0)

As the combinations function now returns an iterator, we can use it like this:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
for i in combinations_iterator([1, 2, 3, 4], 2):
    print(i)
# [1, 2]
# [1, 3]
# [1, 4]
# [2, 3]
# [2, 4]
# [3, 4]
for i in combinations_iterator(['a', 'b', 'c', 'd'], 2):
    print(i)
# ['a', 'b']
# ['a', 'c']
# ['a', 'd']
# ['b', 'c']
# ['b', 'd']
# ['c', 'd']
for i in combinations_iterator('abcd', 2):
    print(i)
# ab
# ac
# ad
# bc
# bd
# cd
for i in combinations_iterator([1, 2, 3, 4], 2):
    print(i)
# [1, 2]
# [1, 3]
# [1, 4]
# [2, 3]
# [2, 4]
# [3, 4]
for i in combinations_iterator(['a', 'b', 'c', 'd'], 2):
    print(i)
# ['a', 'b']
# ['a', 'c']
# ['a', 'd']
# ['b', 'c']
# ['b', 'd']
# ['c', 'd']
for i in combinations_iterator('abcd', 2):
    print(i)
# ab
# ac
# ad
# bc
# bd
# cd
python The Combination Function and Iterator using Depth First Search Algorithm algorithms c / c++ DFS python

python

Another interesting read to implement the combination using bitmasking algorithm: Using Bitmasking Algorithm to Compute the Combinations of an Array

–EOF (The Ultimate Computing & Technology Blog) —

Recommend:
How to use ‘Answer the Public’ to Create Unmissable Blog Posts
A Guide to Handling Negative Comments and Reviews
The Best Link Building Methods For Your Website
How To Use Twitter To Get New Clients
How to Turn Your Best Blog Posts Into Even Better Videos
Why You Need Influencers for Your Brand In 2019
How to Use a Blog to Increase Ecommerce Sales
Why conducting a website audit is important
How to Write a Great Blog Post for a Global Audience
Top Reasons Why Your Blog Sucks at Making Money (and How to Fix
Share:Facebook Twitter
Comment list
Comment add