Dynamic Programming Algorithm to Compute the Max Dot Product of
- Time:2020-09-08 11:08:55
- Class:Weblog
- Read:44
Given two arrays nums1 and nums2. Return the maximum dot product between non-empty subsequences of nums1 and nums2 with the same length.
A subsequence of a array is a new array which is formed from the original array by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, [2,3,5] is a subsequence of [1,2,3,4,5] while [1,5,3] is not).
Example 1:
Input: nums1 = [2,1,-2,5], nums2 = [3,0,-6]
Output: 18
Explanation: Take subsequence [2,-2] from nums1 and subsequence [3,-6] from nums2.
Their dot product is (2*3 + (-2)*(-6)) = 18.Example 2:
Input: nums1 = [3,-2], nums2 = [2,-6,7]
Output: 21
Explanation: Take subsequence [3] from nums1 and subsequence [7] from nums2.
Their dot product is (3*7) = 21.Example 3:
Input: nums1 = [-1,-1], nums2 = [1,1]
Output: -1
Explanation: Take subsequence [-1] from nums1 and subsequence [1] from nums2.
Their dot product is -1.Constraints:
1 <= nums1.length, nums2.length <= 500
-1000 <= nums1[i], nums2[i] <= 1000Hint:
Use dynamic programming, define DP[i][j] as the maximum dot product of two subsequences starting in the position i of nums1 and position j of nums2.
Compute the Max Dot Product of Two Subsequences
We can use DFS (Depth First Search) to enumerate the possible subsequences combination of both, but the complexity is exponetial. The key to solve this problem is to re-use the intermediate results, via Dynamic Programming algorithm.
We use a two-dimensional array dp[i][j] to represent the maxium dot product of two subsequences that end with index i and j respectively for two subsequences. Then dp[i][j] should the maximum of these values: num1[i]*num2[j], dp[i-1][j], dp[i][j-1], dp[i-1][j-1], dp[i-1][j-1]+nums1[i]*nums2[j].
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | class Solution { public: int maxDotProduct(vector<int>& nums1, vector<int>& nums2) { int m = nums1.size(), n = nums2.size(); if (!m || !n) return 0; vector<vector<int>> dp(m, vector<int>(n, 0)); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { dp[i][j] = nums1[i] * nums2[j]; if (i-1 >= 0) dp[i][j] = max(dp[i-1][j], dp[i][j]); if (j-1 >= 0) dp[i][j] = max(dp[i][j-1], dp[i][j]); if (i-1 >= 0 && j-1>= 0) { dp[i][j] = max(dp[i][j], dp[i-1][j-1] + nums1[i]*nums2[j]); dp[i][j] = max(dp[i][j], dp[i-1][j-1]); } } } return dp[m-1][n-1]; } }; |
class Solution { public: int maxDotProduct(vector<int>& nums1, vector<int>& nums2) { int m = nums1.size(), n = nums2.size(); if (!m || !n) return 0; vector<vector<int>> dp(m, vector<int>(n, 0)); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { dp[i][j] = nums1[i] * nums2[j]; if (i-1 >= 0) dp[i][j] = max(dp[i-1][j], dp[i][j]); if (j-1 >= 0) dp[i][j] = max(dp[i][j-1], dp[i][j]); if (i-1 >= 0 && j-1>= 0) { dp[i][j] = max(dp[i][j], dp[i-1][j-1] + nums1[i]*nums2[j]); dp[i][j] = max(dp[i][j], dp[i-1][j-1]); } } } return dp[m-1][n-1]; } };
Complexity is quadric O(N^2) – and the space requirement is O(N^2) as well. The answer is dp[m-1][n-1] where m and n are the lengths of both sequences respectively.
–EOF (The Ultimate Computing & Technology Blog) —
Recommend:The Good Old Days – 5 Ways To Use Nostalgia Marketing In Ecommer
7 Top Tools to Build Your Blog and Brand Like A Pro
Top Reasons to Start a Blog During Lockdown
3 Tips for Handling a National Crisis – From a Blogging Perspect
6 Best WordPress Plugins for eLearning & Tutorial Websites
A Successful Marketing Chain Examined
4 Productivity Tips While You Work from Home During The Lockdown
How Does an SSL Work on Your Blog?
How to Start a Popular Blog for Real Estate Agents
Critics of Japan’s Handling of the Cruise Ship Coronavirus Quara
- Comment list
-
- Comment add